ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины
Б1.О.7 «ВЫСШАЯ МАТЕМАТИКА»
для направления подготовки
08.03.01 «Строительство»

по профилям

«Водоснабжение и водоотведение», «Промышленное и гражданское строительство» «Автомобильные дороги»

ЛИСТ СОГЛАСОВАНИЙ

Оценочные материалы рассмотрены и утверждены на заседании кафедры «Высшая математика» Протокол № 4 от 17 декабря 2024 г.

Заведующий кафедрой «Высшая математика» 20 г.	 Е.А. Благовещенская
СОГЛАСОВАНО	
Руководитель ОПОП ВО 20 г.	 Н.В. Твардовская
СОГЛАСОВАНО	Г.А.Богданова
Руководитель ОПОП ВО 20 г.	
СОГЛАСОВАНО	 А.Ф. Колос
Руководитель ОПОП ВО 20 г.	

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы, приведены в п. 2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблице 2.1.

Таблица 2.1

Индикатор достижения компетенции	Планируемые результаты обучения	Материалы, необходимые для оценки индикатора достижения компетенции							
использования теоретич	ОПК-1. Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата								
ОПК-1.1.1. Знает теоретические и практические основы естественных наук, а также математического аппарата для решения задач профессиональной деятельности	Обучающийся знает: основные понятия и методы линейной алгебры, аналитической геометрии, математического анализа, дифференциальных уравнений, числовых и функциональных рядов, теории вероятностей и математической статистики.	Вопросы №1-32 к экзамену № 1. Вопросы №1-30 к экзамену № 2 Тестовые задания №№1,2 Типовые задания №№1-4 Отчет о Лабораторной работе №1							
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также математического аппарата	Обучающийся умеет: использовать математический аппарат для решения задач при проектировании зданий, сооружений и инженерных коммуникаций.	Вопросы №1-32 к экзамену № 1. Вопросы №1-30 к экзамену № 2 Тестовые задания №№1,2 Типовые задания №№1-4 Отчет о Лабораторной работе №1							

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания:

Для очной формы обучения

Перечень и содержание типовых заданий (СДО, раздел «Текущий контроль)

Модуль 1

- 1. Типовое задание №1 по теме «Линейная алгебра и аналитическая геометрия»
- 2. Типовое задание №2 по теме «Математический анализ. Часть 1 и 2»
- 3. Отчет о Лабораторной работе №1 «Лабораторная работа «Интегралы. Приближенное вычисление определенного интеграла»

Модуль 2

- 1. Типовое задание №3 по теме «Дифференциальные уравнения. Числовые и функциональные ряды»
- **2.** Типовое задание №4 по теме «Теория вероятностей и математическая статистика»

Типовое задание №1 по теме «Линейная алгебра и аналитическая геометрия»

Задание 1. Даны матрицы A, B и C . Найти:

- 1) матрицы $D = B \cdot C^T$ и F = 2A 3D;
- 2) определители матриц A,D и F;
- 3) обратную матрицу A^{-1} (сделать проверку).

Задание 2. Решить систему линейных уравнений

- 1) методом Крамера;
- 2) матричным методом;
- 3) методом Гаусса.

Задание 3. Найти ранг матрицы.

Задание 4. Исследовать систему с помощью теоремы Кронекера—Капелли и найти (в случае совместности) ее решения.

Задание 5. Доказать, что векторы a,b,c линейно зависимы и найти эту зависимость. **Задание 6.**

Дана пирамида ABCD. Найти:

- 1) длину и уравнение ребра AD;
- 2) площадь и уравнение грани ABC;
- 3) объем пирамиды;
- 4) длину и уравнение высоты, опущенной из вершины $\,D\,$ на плоскость $\,A\!B\!C\,$;
- 5) угол между ребром AD и гранью ABC ;
- 6) угол между гранями ABC и ABD.

Типовое задание №2 по теме «Математический анализ. Часть 1 и 2»

Задание 1. Записать число z в алгебраической, тригонометрической и показательной форме. Вычислить z^{12} .

Задание 2. Вычислить пределы.

Задание 3. Исследовать функции на непрерывность.

Задание 4. Исследовать функции с помощью производной.

Задание 5 Найти частные производные второго порядка функции z = f(x, y) и показать, что она удовлетворяет данному уравнению (L).

Задание 6. Найти градиент скалярного поля U в точке $M(x_0, y_0, z_0)$.

Задание 7. 1 - 10. Найти интегралы.

Задание 8. 1-2. Найти площади фигур, ограниченных линиями.

Задание 9. Изменить порядок интегрирования в двойном интеграле. Найти объем тела, ограниченного данными поверхностями.

Задание 10. Вычислить криволинейный интеграл второго рода по дуге AB в направлении от точки A к точке B.

Типовое задание №3 по теме

«Дифференциальные уравнения. Числовые и функциональные ряды»

Задание 1. Исследовать сходимость числовых рядов.

Задание 2. Определить радиус, интервал сходимости изучить поведение

степенного ряда на концах интервала сходимости.

Задание 3. Разложить функцию вряд Тейлора по степеням x - a.

Задание 4. Функция f(x) определена на интервале [a, a+2l). Разложить функцию в ряд Фурье.

Задания 5–10. Найти общие решения (общие интегралы) дифференциальных уравнений первого порядка или решения задачи Коши.

Задания 11–13. Найти общие решения (общие интегралы) дифференциальных уравнений второго порядка с постоянными коэффициентами или решения задачи Коши.

Типовое задание №4 по теме «Теория вероятностей и математическая статистика»

Задание 1-6. Вычислить вероятность.

Задание 7-8. Найти функцию распределения и основные числовые характеристики дискретной случайной величины, заданной таблицей.

Задание 9. Задана функция распределения непрерывной случайной величины. Найти неизвестные параметры, плотность распределения, построить графики функции и плотности распределения. Найти математическое ожидание, дисперсию, среднее квадратичное отклонение и заданную вероятность.

Задание 10. Дана выборка объема п. Требуется:

- 1. Составить вариационный ряд.
- 2. Составить сгруппированный статистический ряд.
- 3. Построить гистограмму выборки.

Построить график эмпирической функции распределения.

4. Найти выборочное среднее, выборочное среднеквадратическое отклонение, коэффициенты асимметрии и эксцесса.

Тестовые задания

Тест №1 по темам «Линейная алгебра и аналитическая геометрия. Математический анализ. Часть 1 и 2».

Образец теста №1:

Задание 1. Определитель
$$\begin{vmatrix} -1 & 1 & 2 \\ -2 & \alpha & 4 \\ -3 & 0 & 1 \end{vmatrix}$$
 равен нулю при α , равном

ВАРИАНТЫ ОТВЕТОВ:

Задание 2. Какие из данных матриц имеют обратную?

ВАРИАНТЫ ОТВЕТОВ:

$$1)\begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \quad 2)\begin{pmatrix} -2 & 1 & 2 \\ 1 & 0 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \quad 3)\begin{pmatrix} -3 & 1 & 2 \\ 4 & 0 & 4 \\ 1 & 0 & 1 \end{pmatrix}; \quad 4)\begin{pmatrix} -1 & 1 & 2 \\ 3 & 0 & 4 \\ 2 & 0 & 1 \end{pmatrix}$$

Задание 3. Укажите верные соотношения между векторами

$$\vec{a} = 2\vec{i} - \vec{j} - 3\vec{k}, \quad \vec{b} = \vec{i} + 2\vec{j}, \quad \vec{c} = -4\vec{i} + 2\vec{j} + 6\vec{k}$$

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\vec{a} \, \Box \vec{b}$$
 2) $\vec{a} \, \bot$

1)
$$\vec{a} \Box \vec{b}$$
 2) $\vec{a} \perp \vec{b}$ 3) $\vec{b} \perp \vec{c}$ 4) $\vec{a} \Box \vec{c}$

Задание 4. Запишите прямые в порядке увеличения их угловых коэффициентов

1)
$$2x - y - 7 = 0$$
; $2x - 2y + 3 = 0$; $3x - 2y + 5 = 0$

Задание 5. Нормальным вектором плоскости 4x - 3y + 2z - 1 = 0 является вектор

ВАРИАНТЫ ОТВЕТОВ:

1)
$$(4,-3,2,-1)$$
 2) $(4,-3,2)$ 3) $(4,3,2)$ 4) $(2,-3,4)$

Задание 6. Модуль r и аргумент φ комплексного числа z = 1 - i равны ВАРИАНТЫ ОТВЕТОВ:

1)
$$r = \sqrt{2}; \varphi = \frac{\pi}{4};$$
 2) $r = 1; \varphi = -\frac{\pi}{4};$ 3) $r = \sqrt{2}; \varphi = -\frac{\pi}{4};$ 4) $r = 1; \varphi = \frac{3\pi}{4}$

Задание 7. Используя математический анализ, установите соответствие между функциями и их свойствами

Функция			Свойство	
			ВАРИАНТЫ ОТВЕТОВ	
1.	$f(x) = (1-x)^3$	1.	четная	
2.	$f(x) = \sin x^2$	2.	. ограниченная	
3.	f(x) = arctgx	3.	монотонная	

Задание 8. Предел $\lim_{n\to\infty}\frac{2n-1}{n+2}$ равен

ВАРИАНТЫ ОТВЕТОВ:

Задание 9. Используя математический анализ, вычислите производную функции $y = x \cdot \sqrt{x^2 + 1}$ в точке $x_0 = 0$

ВАРИАНТЫ ОТВЕТОВ:

Задание 10. Если $z = \sin(3x - 5y)$, то выражение $\frac{z'_y}{z'}$ равно:

1)
$$-1\frac{2}{3}$$
; 2) $-\frac{3}{5}$; 3) 0, 6; 4) -15 ; 5) $\frac{5}{3}$.

Задание 11. Функция $z = 3 - 2x^2 - 4x - y^2$

- 1) не имеет экстремумов;
- 2) имеет максимум в точке A(-1;0);
- 3) имеет минимум в точке B(-1;0);

Задание 12. Пусть $\int f(x)dx = F(x) + C$. Укажите, какие из приведенных ниже соотношений справедливы:

ВАРИАНТЫ ОТВЕТОВ:

ВАГИАПТЫ ОТВЕТОВ.

1)
$$(\int f(x)dx)' = F(x)$$
, 2) $F(x)$ - первообразная функци $f(x)$, 3) $\int f(ax)dx = \frac{1}{a}F(x) + C$, 4) $(\int f(x)dx)' = f(x)$.

$$3) \int f(ax)dx = \frac{1}{a}F(x) + C, \ 4)(\int f(x)dx)' = f(x)$$

Задание 13. Используя математический анализ, установите соответствие между функциями f(x) и их первообразными F(x)

	7 3 13		1 1 1
	Функция $f(x)$		Первообразная $F(x)$
			ВАРИАНТЫ ОТВЕТОВ:
1.	$f(x) = \frac{1}{\left(2x+1\right)^2}$	1.	$F(x) = \sqrt{2x+1}$
2.	$f(x) = \frac{1}{\sqrt{2x+1}}$	2	$F(x) = \frac{1}{2}\ln(2x+1)$
3.	$f(x) = \frac{1}{2x+1}$	3.	$F(x) = -\frac{1}{2(2x+1)}$

Задание 14. Используя математический анализ, вычислите $\int_{0}^{2} (2-x) dx$

ВАРИАНТЫ ОТВЕТОВ: 1) 1,5; 2) 4,5; 3) 2,5; 4) 0,5.

Задание 15. Двойной интеграл $\iint f(x,y) dx dy$; D: y = x, y = 0, x = 1

сводится к повторным интегралам:

ВАРИАНТЫ ОТВЕТОВ:

$$\frac{1)\int_{0}^{1} dx \int_{0}^{1} f(x, y) dy;}{4)\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx;} \quad \frac{2)\int_{0}^{1} dy \int_{y}^{1} f(x, y) dx;}{4)\int_{0}^{1} dy \int_{0}^{y} f(x, y) dx.}$$

Тест №2 по темам «Дифференциальные уравнения, ряды, теория вероятности и математическая статистика»

Образец теста №2:

Задание 1. Какие из указанных функций являются решением данного дифференциального уравнения $y' = \frac{xy}{1+x^2}$?

1)
$$y = (1 + x^2)$$
; 2) $y = 3\sqrt{1 + x^2}$; 3) $y = \frac{1}{\sqrt{1 + x^2}}$; 4) $y = 0.5\sqrt{1 + x^2}$.

Задание 2. Установите соответствие между ДУ и типами ДУ

	ДУ		Тип ДУ
		ВАРИАНТЫ ОТВЕТОВ	
1.	y ²	1.	ДУ с разделяющимися
	$y - \frac{1}{x} = x$		переменными
2.	$y^2 + x^2 y' = xyy'.$	2.	Линейное ДУ
3.	$(x^2 + 5x)dx - x(y^2 + 3)dy =$	3 .	ДУ Бернулли
4.	$xy' - y^2 \ln x + y = 0.$	4.	Однородное ДУ

Задание 3. Какая из указанных функций является решением ДУ y' + y = x, удовлетворяющим начальному условию y(0) = -1?

1)
$$y = -(x+1)^2$$
; 2) $y = x-1$; 3) $y = x^2 - 1$; 4) $y = (x-2)^2 - 5$.

Задание 4. Математическая модель некоторого процесса описывается ДУ y'' - 5y' + 6y = 0. Какие функции входят в фундаментальную систему решений ДУ?

1)
$$y = e^x$$
; 2) $y = e^{2x}$; 3) $y = e^{5x}$; 4) $y = e^{3x}$.

Задание 5. Для каждого ДУ укажите, в каком виде следует искать частное решение ЛНДУ:

	ДУ		Вид частного решения ЛНДУ
			ВАРИАНТЫ ОТВЕТОВ
1.	$y'' - 2y' = 2e^{2x}$	1.	$y = Ax^2 e^{2x}$
2.	$y"-4y=2xe^{2x}$	2.	$y = Axe^{2x}$
3.	$y'' - 4y' + 4y = 2e^{2x}$	3.	$y = xe^{2x}(Ax + B)$

Задание 6. Вагон массой m замедляет движение на прямолинейном участке пути под действием силы сопротивления, пропорциональной скорости движения: $R = k \cdot v(t)$, (k > 0). Тогда математическая модель движения описывается ДУ:

ВАРИАНТЫ ОТВЕТОВ:

1) $m \cdot x'' = k \cdot x$; 2) $m \cdot x'' = k \cdot x'$; 3) $m \cdot x'' = -k \cdot x'$; 4) $m \cdot x' = k \cdot x''$ 3десь x(t) — расстояние от вагона до начала координат в момент времени t.

Задание 7. Какие утверждения являются верными?

- 1) Если ряд сходится, то его общий член стремится к нулю;
- 2) Если общий член ряда стремится к нулю, то ряд сходится;
- 3) Если общий член ряда не стремится к нулю, то ряд расходится;
- 4) Если ряд расходится, то его общий член не стремится к нулю.

Задание 8. Сумма числового ряда $1-0.5+(0.5)^2-(0.5)^3+...$ равна

1)
$$\frac{1}{5}$$
; 2) $\frac{3}{2}$; 3) $\frac{2}{3}$; 4) 2.

Задание 9. Укажите последовательно первые три ненулевые числовые коэффициента в разложения функции $f(x) = \sin 2x$ в ряд Маклорена:

1)
$$-\frac{4}{3}$$
; 2) $\frac{4}{15}$; 3) 2.

Задание 10. Пусть A и B — случайные события. Установите соответствие между событиями, заданными словесными описаниями и их записью через алгебру событий.

	Словесные описания		Запись	на	языке	алгебры
	событий		событий			
			ВАРИАН	НТЫ	OTBETO)B
1.	произошло только одно из	1.	A+B			
	этих событий					
2.	произошло хотя бы одно из	2.	$A \cdot \overline{B} + \overline{A}$	$\overline{1 \cdot R}$		
	этих событий		11 10 1 1.			
3.	Не произошло ни одно из	3.	$\overline{A} \cdot \overline{B}$			
	этих вобытий					

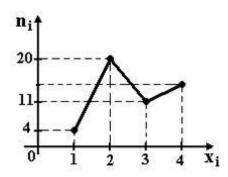
Задание 11. Два стрелка производят по одному выстрелу. Вероятности попадания в цель для первого и второго стрелков равны 0,6 и 0,3 соответственно. Тогда вероятность того, что в цель будет поражена, равна... ВАРИАНТЫ ОТВЕТОВ:

1) 0,9; 2) 0,72; 3) 0,28; 4) 0,18

Задание 12. Пусть X — дискретная случайная величина, заданная законом распределения вероятностей:

X	-1	3
p	0,4	0,6

Тогда дисперсия этой случайной величины равна...


ВАРИАНТЫ ОТВЕТОВ:

1) 3,84; 2) 1,4; 3) 3,04; 4) 2,54

Задание 13. Заданы плотности распределения вероятностей случайных величин. Найдите математические ожидания этих случайных величин. Расположите эти случайные величины в порядке убывания их математических ожиданий.

1)
$$f(x) = \begin{cases} a, & x \in [-1,1] \\ 0, & x \notin [-1,1] \end{cases}$$
; 2) $f(x) = \begin{cases} 0, & x < 0 \\ 0, 5 \cdot e^{-0.5x}, & x \ge 0 \end{cases}$; 3) $f(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-4)^2}{18}}$

Задание 14. Из генеральной совокупности извлечена выборка объема n=50, полигон частот которой имеет вид

Тогда число вариант $x_i = 4$ в выборке равно...

ВАРИАНТЫ ОТВЕТОВ:

Задание 15. Если основная гипотеза имеет вид $H_{_{0}}$: a=-3, то

конкурирующей может быть гипотеза ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$H_1: a \le -4$$
; 2) $H_1: a \le -3$; 3) $H_1: a \ge -4$; 4) $H_1: a \ge -2$

Перечень и содержание лабораторных работ

- 1. Лабораторная работа №1 «Интегралы. Приближенное вычисление определенного интеграла»
 - 1. Вычисление интеграла при числе разбиений n=4, n=8, n=16 и n=32
 - 1.1 методом левых прямоугольников;
 - 1.2 методом правых прямоугольников;
 - 1.3 методом трапеций;
 - 1.4 методом парабол (методом Симпсона).
 - 2. Вычисление погрешности вычислений для каждого метода с помощью формулы Рунге.
 - 3. Выводы о точности методов.

Для очно-заочной формы обучения (все профили, кроме «Автомобильные дороги»).

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания:

Перечень и содержание типовых заданий (СДО, раздел «Текущий контроль)

- 4. Типовое задание №1 по теме «Линейная алгебра и аналитическая геометрия»
- 5. Типовое задание №2 по теме «Математический анализ. Часть 1 и 2»

Модуль 2

- **3.** Типовое задание №3 по теме «Дифференциальные уравнения. Числовые и функциональные ряды»
- **4.** Типовое задание №4 по теме «Теория вероятностей и математическая статистика»

Типовое задание №1 по теме «Линейная алгебра и аналитическая геометрия»

Задание 1. Даны матрицы A, B и C . Найти:

- 4) матрицы $D = B \cdot C^T$ и F = 2A 3D;
- 5) определители матриц A,D и F ;
- 6) обратную матрицу A^{-1} (сделать проверку).

Задание 2. Решить систему линейных уравнений

- 4) методом Крамера;
- 5) матричным методом;
- 6) методом Гаусса.

Задание 3. Найти ранг матрицы.

Задание 4. Исследовать систему с помощью теоремы Кронекера—Капелли и найти (в случае совместности) ее решения.

Задание 5. Доказать, что векторы a,b,c линейно зависимы и найти эту зависимость. **Задание 6.**

Дана пирамида ABCD. Найти:

- 7) длину и уравнение ребра AD;
- 8) площадь и уравнение грани ABC;
- 9) объем пирамиды;
- 10) длину и уравнение высоты, опущенной из вершины D на плоскость ABC ;
- 11) угол между ребром AD и гранью ABC ;
- 12) угол между гранями ABC и ABD.

Типовое задание №2 по теме «Математический анализ. Часть 1 и 2»

Задание 1. Записать число z в алгебраической, тригонометрической и показательной форме. Вычислить z^{12} .

Задание 2. Вычислить пределы.

Задание 3. Исследовать функции на непрерывность.

Задание 4. Исследовать функции с помощью производной.

Задание 5 Найти частные производные второго порядка функции z = f(x, y) и показать, что она удовлетворяет данному уравнению (L).

Задание 6. Найти градиент скалярного поля U в точке $M(x_0, y_0, z_0)$.

Задание 7. 1 - 10. Найти интегралы.

Задание 8. 1 – 2. Найти площади фигур, ограниченных линиями.

Задание 9. Изменить порядок интегрирования в двойном интеграле. Найти объем тела, ограниченного данными поверхностями.

Задание 10. Вычислить криволинейный интеграл второго рода по дуге AB в направлении от точки A к точке B.

Типовое задание №3 по теме

«Дифференциальные уравнения. Числовые и функциональные ряды»

Задание 1. Исследовать сходимость числовых рядов.

Задание 2. Определить радиус, интервал сходимости изучить поведение

степенного ряда на концах интервала сходимости.

Задание 3. Разложить функцию вряд Тейлора по степеням x - a.

Задание 4. Функция f(x) определена на интервале [a,a+2l). Разложить функцию в ряд Фурье.

Задания 5–10. Найти общие решения (общие интегралы) дифференциальных уравнений первого порядка или решения задачи Коши.

Задания 11–13. Найти общие решения (общие интегралы) дифференциальных уравнений второго порядка с постоянными коэффициентами или решения задачи Коши.

Типовое задание №4 по теме «Теория вероятностей и математическая статистика»

Задание 1-6. Вычислить вероятность.

Задание 7-8. Найти функцию распределения и основные числовые характеристики дискретной случайной величины, заданной таблицей.

Задание 9. Задана функция распределения непрерывной случайной величины. Найти неизвестные параметры, плотность распределения, построить графики функции и плотности распределения. Найти математическое ожидание, дисперсию, среднее квадратичное отклонение и заданную вероятность.

Задание 10. Дана выборка объема n. Требуется:

- 5. Составить вариационный ряд.
- 6. Составить сгруппированный статистический ряд.
- 7. Построить гистограмму выборки.

Построить график эмпирической функции распределения.

8. Найти выборочное среднее, выборочное среднеквадратическое отклонение, коэффициенты асимметрии и эксцесса.

Тестовые задания Модуль 1

Тест №1 по темам «Линейная алгебра и аналитическая геометрия. Математический анализ. Часть 1 и 2».

Образец теста №1:

Задание 1. Определитель
$$\begin{vmatrix} -1 & 1 & 2 \\ -2 & \alpha & 4 \\ -3 & 0 & 1 \end{vmatrix}$$
 равен нулю при α , равном

ВАРИАНТЫ ОТВЕТОВ:

2) 2 3) 3 4) 4

Задание 2. Какие из данных матриц имеют обратную? ВАРИАНТЫ ОТВЕТОВ:

$$1)\begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \quad 2)\begin{pmatrix} -2 & 1 & 2 \\ 1 & 0 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \quad 3)\begin{pmatrix} -3 & 1 & 2 \\ 4 & 0 & 4 \\ 1 & 0 & 1 \end{pmatrix}; \quad 4)\begin{pmatrix} -1 & 1 & 2 \\ 3 & 0 & 4 \\ 2 & 0 & 1 \end{pmatrix}$$

Задание 3. Укажите верные соотношения между векторами

$$\vec{a} = 2\vec{i} - \vec{j} - 3\vec{k}, \quad \vec{b} = \vec{i} + 2\vec{j}, \quad \vec{c} = -4\vec{i} + 2\vec{j} + 6\vec{k}$$

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\vec{a} \square \vec{b}$$

2)
$$\vec{a} \perp \vec{b}$$

PUANTISI OTBETOB:

1)
$$\vec{a} \Box \vec{b}$$
 2) $\vec{a} \perp \vec{b}$ 3) $\vec{b} \perp \vec{c}$ 4) $\vec{a} \Box \vec{c}$

Задание 4. Запишите прямые в порядке увеличения их угловых коэффициентов

$$(2)^{2}2x-y-7=0$$
; $(2)^{2}x-2y+3=0$; $(3)^{2}2x+2y+5=0$

Задание 5. Нормальным вектором плоскости 4x - 3y + 2z - 1 = 0 является вектор

ВАРИАНТЫ ОТВЕТОВ:

1)
$$(4,-3,2,-1)$$
 2) $(4,-3,2)$ 3) $(4,3,2)$ 4) $(2,-3,4)$

Задание 6. Модуль r и аргумент φ комплексного числа z = 1 - i равны ВАРИАНТЫ ОТВЕТОВ:

1)
$$r = \sqrt{2}; \varphi = \frac{\pi}{4};$$
 2) $r = 1; \varphi = -\frac{\pi}{4};$ 3) $r = \sqrt{2}; \varphi = -\frac{\pi}{4};$ 4) $r = 1; \varphi = \frac{3\pi}{4}$

Задание 7. Используя математический анализ, установите соответствие между функциями и их свойствами

	Функция		Свойство		
			ВАРИАНТЫ ОТВЕТОВ		
1.	$f(x) = (1-x)^3$	1.	четная		
2.	$f(x) = \sin x^2$	2.	ограниченная		
3.	f(x) = arctgx	3.	монотонная		

Задание 8. Предел $\lim_{n\to\infty} \frac{2n-1}{n+2}$ равен

ВАРИАНТЫ ОТВЕТОВ:

$$3) -0.5;$$

$$4) -1$$

Задание 9. Используя математический анализ, вычислите производную функции $y = x \cdot \sqrt{x^2 + 1}$ в точке $x_0 = 0$

ВАРИАНТЫ ОТВЕТОВ:

3) 2;
$$4) -1$$

Задание 10. Если $z = \sin(3x - 5y)$, то выражение $\frac{z_y}{z'}$ равно:

1)
$$-1\frac{2}{3}$$
; 2) $-\frac{3}{5}$; 3) 0, 6; 4) -15 ; 5) $\frac{5}{3}$.

Задание 11. Функция $z = 3 - 2x^2 - 4x - y^2$

- 1) не имеет экстремумов;
- 2) имеет максимум в точке A(-1;0);
- 3) имеет минимум в точке B(-1;0);

Задание 12. Пусть $\int f(x)dx = F(x) + C$. Укажите, какие из приведенных ниже соотношений справедливы:

ВАРИАНТЫ ОТВЕТОВ:

$$1)(\int f(x)dx)' = F(x),$$
 2) $F(x)$ - первообразная функции $f(x)$, $3)\int f(ax)dx = \frac{1}{a}F(x) + C$, $4)(\int f(x)dx)' = f(x)$.

$$3) \int f(ax)dx = \frac{1}{a}F(x) + C, \ 4)(\int f(x)dx)' = f(x).$$

Задание 13. Используя математический анализ, установите соответствие между функциями f(x) и их первообразными F(x)

	Функция $f(x)$		Первообразная $F(x)$		
			ВАРИАНТЫ ОТВЕТОВ:		
1.	$f(x) = \frac{1}{\left(2x+1\right)^2}$	1.	$F(x) = \sqrt{2x+1}$		
2.	$f(x) = \frac{1}{\sqrt{2x+1}}$	2	$F(x) = \frac{1}{2}\ln(2x+1)$		
3.	$f(x) = \frac{1}{2x+1}$	3.	$F(x) = -\frac{1}{2(2x+1)}$		

Задание 14. Используя математический анализ, вычислите $\int_{1}^{2} (2-x) dx$

ВАРИАНТЫ ОТВЕТОВ: 1) 1,5; 2) 4,5; 3) 2,5; 4) 0,5.

Задание 15. Двойной интеграл
$$\iint_D f(x, y) dx dy$$
; $D: y = x, y = 0, x = 1$

сводится к повторным интегралам:

ВАРИАНТЫ ОТВЕТОВ:

$$\frac{1)\int_{0}^{1} dx \int_{0}^{1} f(x,y)dy;}{4)\int_{0}^{1} dy \int_{0}^{1} f(x,y)dx;} \quad 2)\int_{0}^{1} dy \int_{y}^{1} f(x,y)dx;} \quad 3)\int_{0}^{1} dx \int_{0}^{x} f(x,y)dy}$$

$$4)\int_{0}^{1}dy\int_{0}^{y}f(x,y)dx.$$

Тест №2 по темам «Дифференциальные уравнения, ряды, теория вероятности и математическая статистика»

Образец теста №2:

Задание 1. Какие из указанных функций являются решением данного дифференциального уравнения $y' = \frac{xy}{1+x^2}$?

1)
$$y = (1 + x^2)$$
; 2) $y = 3\sqrt{1 + x^2}$; 3) $y = \frac{1}{\sqrt{1 + x^2}}$; 4) $y = 0.5\sqrt{1 + x^2}$.

Задание 2. Установите соответствие между ДУ и типами ДУ

	ДУ		Тип ДУ
		ВАРИАНТЫ ОТВЕТОВ	
1.	$y' - \frac{y}{x} = x^2$	1.	ДУ с разделяющимися
	$y - \frac{1}{x} = x$		переменными
2.	$y^2 + x^2 y' = xyy'.$	2.	Линейное ДУ
3.	$(x^2 + 5x)dx - x(y^2 + 3)dy =$	3 .	ДУ Бернулли
4.	$xy' - y^2 \ln x + y = 0.$	4.	Однородное ДУ

Задание 3. Какая из указанных функций является решением ДУ y' + y = x, удовлетворяющим начальному условию y(0) = -1?

1)
$$y = -(x+1)^2$$
; 2) $y = x-1$; 3) $y = x^2 - 1$; 4) $y = (x-2)^2 - 5$.

Задание 4. Математическая модель некоторого процесса описывается ДУ y'' - 5y' + 6y = 0. Какие функции входят в фундаментальную систему решений ДУ?

1)
$$y = e^x$$
; 2) $y = e^{2x}$; 3) $y = e^{5x}$; 4) $y = e^{3x}$.

Задание 5. Для каждого ДУ укажите, в каком виде следует искать частное решение ЛНДУ:

<u> </u>	F 3		
	ДУ		Вид частного решения ЛНДУ
			ВАРИАНТЫ ОТВЕТОВ
1.	$y'' - 2y' = 2e^{2x}$	1.	$y = Ax^2 e^{2x}$
2.	$y"-4y=2xe^{2x}$	2.	$y = Axe^{2x}$
3.	$y'' - 4y' + 4y = 2e^{2x}$	3.	$y = xe^{2x}(Ax + B)$

Задание 6. Вагон массой m замедляет движение на прямолинейном участке пути под действием силы сопротивления, пропорциональной скорости движения: $R = k \cdot v(t)$, (k > 0). Тогда математическая модель движения описывается ДУ:

ВАРИАНТЫ ОТВЕТОВ:

2) $m \cdot x'' = k \cdot x$; 2) $m \cdot x'' = k \cdot x'$; 3) $m \cdot x'' = -k \cdot x'$; 4) $m \cdot x' = k \cdot x''$ 3десь x(t) — расстояние от вагона до начала координат в момент времени t.

Задание 7. Какие утверждения являются верными?

- 5) Если ряд сходится, то его общий член стремится к нулю;
- 6) Если общий член ряда стремится к нулю, то ряд сходится;
- 7) Если общий член ряда не стремится к нулю, то ряд расходится;
- 8) Если ряд расходится, то его общий член не стремится к нулю.

Задание 8. Сумма числового ряда $1-0.5+(0.5)^2-(0.5)^3+...$ равна

2)
$$\frac{1}{5}$$
; 2) $\frac{3}{2}$; 3) $\frac{2}{3}$; 4) 2.

Задание 9. Укажите последовательно первые три ненулевые числовые коэффициента в разложения функции $f(x) = \sin 2x$ в ряд Маклорена:

1)
$$-\frac{4}{3}$$
; 2) $\frac{4}{15}$; 3) 2.

Задание 10. Пусть A и B — случайные события. Установите соответствие между событиями, заданными словесными описаниями и их записью через алгебру событий.

	Словесные описания		Запись на языке алгебры
	событий		событий
			ВАРИАНТЫ ОТВЕТОВ
1.	произошло только одно из	1.	A+B
	этих событий		
2.	произошло хотя бы одно из	2.	$A \cdot \overline{B} + \overline{A} \cdot B$
	этих событий		
3.	Не произошло ни одно из	3.	$\overline{A} \cdot \overline{B}$
	этих вобытий		

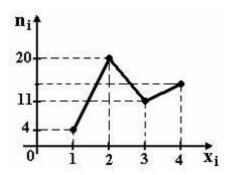
Задание 11. Два стрелка производят по одному выстрелу. Вероятности попадания в цель для первого и второго стрелков равны 0,6 и 0,3 соответственно. Тогда вероятность того, что в цель будет поражена, равна... ВАРИАНТЫ ОТВЕТОВ:

1) 0,9; 2) 0,72; 3) 0,28; 4) 0,18

Задание 12. Пусть X — дискретная случайная величина, заданная законом распределения вероятностей:

X	-1	3
p	0,4	0,6

Тогда дисперсия этой случайной величины равна...


ВАРИАНТЫ ОТВЕТОВ:

1) 3,84; 2) 1,4; 3) 3,04; 4) 2,54

Задание 13. Заданы плотности распределения вероятностей случайных величин. Найдите математические ожидания этих случайных величин. Расположите эти случайные величины в порядке убывания их математических ожиданий.

1)
$$f(x) = \begin{cases} a, & x \in [-1,1] \\ 0, & x \notin [-1,1] \end{cases}$$
; 2) $f(x) = \begin{cases} 0, & x < 0 \\ 0, 5 \cdot e^{-0.5x}, & x \ge 0 \end{cases}$; 3) $f(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-4)^2}{18}}$

Задание 14. Из генеральной совокупности извлечена выборка объема n=50, полигон частот которой имеет вид

Тогда число вариант $x_i = 4$ в выборке равно...

ВАРИАНТЫ ОТВЕТОВ:

Задание 15. Если основная гипотеза имеет вид $H_{_0}$: a=-3, то

конкурирующей может быть гипотеза ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$H_1: a \le -4$$
; 2) $H_1: a \le -3$; 3) $H_1: a \ge -4$; 4) $H_1: a \ge -2$

Перечень и содержание лабораторных работ

Лабораторная работа №1 «Интегралы. Приближенное вычисление определенного интеграла»

- 1. Вычисление интеграла при числе разбиений n=4, n=8, n=16 и n=32
- 1.1 методом левых прямоугольников;
- 1.2 методом правых прямоугольников;
- 1.3 методом трапеций;
- 1.4 методом парабол (методом Симпсона).
- 2. Вычисление погрешности вычислений для каждого метода с помощью формулы Рунге.
- 3. Выводы о точности методов.

Материалы для промежуточной аттестации

Перечень вопросов к экзамену №1

Для очной формы обучения (Модуль 1)

- 1. Матрицы. Типы матриц. Действия над матрицами.
- 2. Определители и их свойства.
- 3. Обратная матрица: определение, вычисление, свойства.
- 4. Исследование систем: теорема Кронекера-Капелли. Однородные системы уравнений.
- 5. Вектор, длина вектора, равенство, коллинеарность и компланарность векторов.
- 6. Скалярное, векторное, смешанное произведение: определение, свойства, применение, координатная форма.

- 7. Уравнение линии на плоскости. Прямая на плоскости, различные виды ее уравнений. Взаимное расположение прямых, угол между прямыми на плоскости. Расстояние от точки до прямой.
- 8. Уравнение поверхности. Плоскость, различные виды ее уравнений. Взаимное расположение двух плоскостей, угол между плоскостями. Расстояние от точки до плоскости.
- 1. Прямая в пространстве, различные виды ее уравнений. Взаимное расположение прямых и плоскостей, угол между прямыми и плоскостями.
- 2. Функции. Область определения и область значений функции, график, способы задания функции. Сложная и обратная функция. Основные свойства функций: монотонность, четность, периодичность, ограниченность. Элементарные функции.
- 3. Предел функции в точке. Односторонние пределы. Предел функции при $x \to \infty$.
- 4. Бесконечно большие и бесконечно малые функции и связь между ними. Свойства бесконечно малых функций.
- 5. Основные теоремы о пределах.
- 6. Непрерывность функции в точке (два эквивалентных определения). Точки разрыва и их классификация.
- 7. Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
- 8. Производная функции: определение, механический, физический и геометрический смысл.
- 9. Правила дифференцирования: производная суммы, разности, произведения и частного. Производная сложной и обратной функции.
- 10. Производные высших порядков.
- 11. Дифференциал функции: определение и геометрический смысл. Свойство инвариантности формы дифференциала.
- 12. Теоремы о дифференцируемых функциях: теорема Ролля, Лагранжа и Коши. Правило Лопиталя.
- 13. Исследование функций с помощью производных. Возрастание и убывание, экстремумы. Выпуклость и вогнутость графика функции, точки перегиба. Асимптоты.
- 14. Функции нескольких переменных, предел, непрерывность. Дифференцирование функций нескольких переменных. Частные производные, дифференциал.
- 15. Производная по направлению. Градиент.
- 16. Неопределенный интеграл: определение, свойства, таблица интегралов.
- 17. Основные методы интегрирования: интегрирование по частям, замена переменной.
- 18. Определенный интеграл: определение, свойства.
- 19. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменной в определенном интеграле.
- 20. Геометрические приложения определенного интеграла: площадь плоской фигуры, длина дуги кривой, координаты центра тяжести.
- 21. Несобственные интегралы I и II рода: определение, признаки сходимости, абсолютная сходимость.
- 22. Двойной интеграл: определение, свойства, вычисление, приложения. Двойной интеграл в полярных координатах.
- 23. Криволинейные интегралы I рода: определение основные свойства, способы вычисления, приложения.
- 24. Криволинейные интегралы II рода: определение основные свойства, способы вычисления, приложения.

Перечень вопросов к экзамену №2

Для очной формы обучения (Модуль 2)

1. Числовой ряд, сходимость числового ряда. Свойства сходящихся рядов. Гармонический и геометрический ряд. Необходимый признак сходимости.

- 2. Знакоположительные ряды. Достаточные признаки сходимости знакоположительных рядов.
- 3. Знакочередующиеся ряды. Признак Лейбница (достаточные условия сходимости знакочередующегося ряда). Знакопеременные ряды. Абсолютная сходимость.
- 4. Степенные ряды. Интервал и радиус сходимости степенного ряда.
- 5. Ряды Тейлора и Маклорена.
- 6. Периодические функции и их свойства. Тригонометрические ряды. Ряды Фурье. Теорема Дирихле.
- 7. Основные понятия о ДУ и его решении.
- 8. Дифференциальные уравнения первого порядка. Общее и частное решение. Задача Коши. Теорема существования и единственности решения.
- 9. Уравнения с разделяющимися переменными и однородные ДУ.
- 10. Линейные уравнения первого порядка и уравнения Бернулли.
- 11. ДУ высших порядков. Основные понятия.
- 12. Линейные ДУ. Однородное линейное ДУ второго порядка. Линейно зависимые и независимые функции. Определитель Вронского и его свойства. Фундаментальная система решений ЛОДУ. Теорема о структуре общего решения ЛОДУ.
- 13. ЛОДУ второго порядка с постоянными коэффициентами. Характеристическое уравнение.
- 14. Интегрирование ЛОДУ второго порядка с постоянными коэффициентами: а) случай различных действительных корней характеристического уравнения; б) случай равных действительных корней характеристического уравнения; в) случай комплексных корней характеристического уравнения.
- 15. Линейные неоднородные ДУ. Структура общего решения ЛНДУ второго порядка.
- 16. Решение ЛНДУ методом Лагранжа (вариации произвольных постоянных).
- 17. Решение ЛНДУ со специальной правой частью (метод неопределенных коэффициентов).
- 18. Нормальная система ДУ. Задача Коши. Теорема существования и единственности решения. Основные методы решения СЛДУ с постоянными коэффициентами.
- 19. Испытания и события. Пространство элементарных событий. Операции над событиями.
- 20. Частота событий, свойства частоты. Аксиоматическое определение вероятности. Классическое и геометрическое определение вероятности.
- 21. Условная вероятность. Теорема умножения. Независимость событий. Теорема сложения вероятностей. Формула полной вероятности. Формула Байеса.
- 22. Схема Бернулли. Простейшие задачи на схему Бернулли. Схема Бернулли для больших *п*. Локальная и интегральная теоремы Лапласа.
- 23. Случайные величины. Дискретная (д.с.в.) и непрерывная (н.с.в.) случайные величины (примеры). Функция распределения вероятностей и ее свойства. Математическое ожидание и дисперсия д.с.в. и их свойства.
- 24. Законы распределения д.с.в.: биномиальный, Пуассона. Числовые характеристики для этих законов.
- 25. Плотность распределения н.с.в. и ее связь с функцией распределения. Числовые характеристики н.с.в.: мат. ожидание, дисперсия, среднеквадратическое отклонение. Начальные и центральные моменты.
- 26. Законы распределения н.с.в.: равномерный, показательный и нормальный. Вероятностный смысл параметров нормально распределенной с.в.
- 27. Предельные теоремы теории вероятностей. Закон больших чисел для схемы Бернулли.

- 28. Генеральная совокупность и выборка. Вариационный и статистический ряд. Полигон частот. Группированный статистический ряд и гистограмма.
- 29. Числовые характеристики выборки. Точечные оценки параметров генеральной совокупности и их основные свойства: состоятельность, несмещенность, эффективность.
- 30. Доверительный интервал и доверительная вероятность. Проверка статистических гипотез. Виды статистических гипотез. Общая схема проверки статистических гипотез.

Перечень вопросов к экзамену №1

Для очно-заочной формы обучения (Модуль 1) (все профили, кроме «Автомобильные дороги»)

- 1. Матрицы. Типы матриц. Действия над матрицами.
- 2. Определители и их свойства.
- 3. Обратная матрица: определение, вычисление, свойства.
- 4. Исследование систем: теорема Кронекера-Капелли. Однородные системы уравнений.
- 5. Вектор, длина вектора, равенство, коллинеарность и компланарность векторов.
- 6. Скалярное, векторное, смешанное произведение: определение, свойства применение, координатная форма.
- 7. Уравнение линии на плоскости. Прямая на плоскости, различные виды ее уравнений. Взаимное расположение прямых, угол между прямыми на плоскости. Расстояние от точки до прямой.
- 8. Уравнение поверхности. Плоскость, различные виды ее уравнений. Взаимное расположение двух плоскостей, угол между плоскостями. Расстояние от точки до плоскости.
- 9. Прямая в пространстве, различные виды ее уравнений. Взаимное расположение прямых и плоскостей, угол между прямыми и плоскостями.
- 10. Функции. Область определения и область значений функции, график, способы задания функции. Сложная и обратная функция. Основные свойства функций: монотонность, четность, периодичность, ограниченность. Элементарные функции.
- 11. Предел функции в точке. Односторонние пределы. Предел функции при $x \to \infty$.
- 12. Бесконечно большие и бесконечно малые функции и связь между ними. Свойства бесконечно малых функций.
- 13. Основные теоремы о пределах.
- 14. Непрерывность функции в точке (два эквивалентных определения). Точки разрыва и их классификация.
- 15. Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
- 16. Производная функции: определение, механический, физический и геометрический смысл.
- 17. Правила дифференцирования: производная суммы, разности, произведения и частного. Производная сложной и обратной функции.
- 18. Производные высших порядков.
- 19. Дифференциал функции: определение и геометрический смысл. Свойство инвариантности формы дифференциала.
- 20. Теоремы о дифференцируемых функциях: теорема Ролля, Лагранжа и Коши. Правило Лопиталя.
- 21. Исследование функций с помощью производных. Возрастание и убывание, экстремумы. Выпуклость и вогнутость графика функции, точки перегиба. Асимптоты.

- 22. Функции нескольких переменных, предел, непрерывность. Дифференцирование функций нескольких переменных. Частные производные, дифференциал.
- 23. Производная по направлению. Градиент.
- 24. Неопределенный интеграл: определение, свойства, таблица интегралов.
- 25. Основные методы интегрирования: интегрирование по частям, замена переменной.
- 26. Определенный интеграл: определение, свойства.
- 27. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменной в определенном интеграле.
- 28. Геометрические приложения определенного интеграла: площадь плоской фигуры, длина дуги кривой, координаты центра тяжести.
- 29. Несобственные интегралы I и II рода: определение, признаки сходимости, абсолютная сходимость.
- 30. Двойной интеграл: определение, свойства, вычисление, приложения. Двойной интеграл в полярных координатах.
- 31. Криволинейные интегралы І рода: определение основные свойства, способы вычисления, приложения.
- 32. Криволинейные интегралы II рода: определение основные свойства, способы вычисления, приложения.

Перечень вопросов к экзамену №2

Для очно-заочной формы обучения (Модуль 2) (все профили, кроме «Автомобильные дороги»)

- 1. Числовой ряд, сходимость числового ряда. Свойства сходящихся рядов. Гармонический и геометрический ряд. Необходимый признак сходимости.
- 2. Знакоположительные ряды. Достаточные признаки сходимости знакоположительных рядов.
- 3. Знакочередующиеся ряды. Признак Лейбница (достаточные условия сходимости знакочередующегося ряда). Знакопеременные ряды. Абсолютная сходимость.
- 4. Степенные ряды. Интервал и радиус сходимости степенного ряда.
- 5. Ряды Тейлора и Маклорена.
- 6. Периодические функции и их свойства. Тригонометрические ряды. Ряды Фурье. Теорема Дирихле.
- 7. Основные понятия о ДУ и его решении.
- 8. Дифференциальные уравнения первого порядка. Общее и частное решение. Задача Коши. Теорема существования и единственности решения.
- 9. Уравнения с разделяющимися переменными и однородные ДУ.
- 10. Линейные уравнения первого порядка и уравнения Бернулли.
- 11. ДУ высших порядков. Основные понятия.
- 12. Линейные ДУ. Однородное линейное ДУ второго порядка. Линейно зависимые и независимые функции. Определитель Вронского и его свойства. Фундаментальная система решений ЛОДУ. Теорема о структуре общего решения ЛОДУ.
- 13. ЛОДУ второго порядка с постоянными коэффициентами. Характеристическое уравнение.
- 14. Интегрирование ЛОДУ второго порядка с постоянными коэффициентами: а) случай различных действительных корней характеристического уравнения; б) случай равных действительных корней характеристического уравнения; в) случай комплексных корней характеристического уравнения.
- 15. Линейные неоднородные ДУ. Структура общего решения ЛНДУ второго порядка.
- 16. Решение ЛНДУ методом Лагранжа (вариации произвольных постоянных).

- 17. Решение ЛНДУ со специальной правой частью (метод неопределенных коэффициентов).
- 18. Нормальная система ДУ. Задача Коши. Теорема существования и единственности решения. Основные методы решения СЛДУ с постоянными коэффициентами.
- 19. Испытания и события. Пространство элементарных событий. Операции над событиями.
- 20. Частота событий, свойства частоты. Аксиоматическое определение вероятности. Классическое и геометрическое определение вероятности.
- 21. Условная вероятность. Теорема умножения. Независимость событий. Теорема сложения вероятностей. Формула полной вероятности. Формула Байеса.
- 22. Схема Бернулли. Простейшие задачи на схему Бернулли. Схема Бернулли для больших *п*. Локальная и интегральная теоремы Лапласа.
- 23. Случайные величины. Дискретная (д.с.в.) и непрерывная (н.с.в.) случайные величины (примеры). Функция распределения вероятностей и ее свойства. Математическое ожидание и дисперсия д.с.в. и их свойства.
- 24. Законы распределения д.с.в.: биномиальный, Пуассона. Числовые характеристики для этих законов.
- 25. Плотность распределения н.с.в. и ее связь с функцией распределения. Числовые характеристики н.с.в.: мат. ожидание, дисперсия, среднеквадратическое отклонение. Начальные и центральные моменты.
- 26. Законы распределения н.с.в.: равномерный, показательный и нормальный. Вероятностный смысл параметров нормально распределенной с.в.
- 27. Предельные теоремы теории вероятностей. Закон больших чисел для схемы Бернулли.
- 28. Генеральная совокупность и выборка. Вариационный и статистический ряд. Полигон частот. Группированный статистический ряд и гистограмма.
- 29. Числовые характеристики выборки. Точечные оценки параметров генеральной совокупности и их основные свойства: состоятельность, несмещенность, эффективность.
- 30. Доверительный интервал и доверительная вероятность. Проверка статистических гипотез. Виды статистических гипотез. Общая схема проверки статистических гипотез.

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания — описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю.

Шкала оценивания — порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблице 3.1-3.4.

Таблица 3.1

Для очной формы обучения (Модуль 1)

№ п/п	Материалы необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцени- вания
1	Решение задач	Правильность	Решение правильное и	20
1	т сшение задач	решения задач	самостоятельное	

	Типового		Выполнены не все задания	0
	задания №1		и/или не верные решения	U
		Итого максимальн	ое количество баллов	20
		Правильность	Решение правильное и	15
	Решение задач	Правильность	самостоятельное	
2	Типового	решения задач	Выполнены не все задания	0
	задания №2	решения задач	и/или не верные решения	
		Итого максимальн	ое количество баллов	15
		Правильность	14-15 задач решены	30
3	Тест №1	решения	11-13 задач решены	20
3		задач	10 задач решены	10
		Итого максимальное кол	30	
	Отчет о Лабораторной работе №1		Работа выполнена	5
		Выполнение	правильно	
4		лабораторной работы	Работа выполнена с	0
+		лаоораторной раооты	ошибками или не	
			выполнена	
		Итого максимально	е количество баллов	5
	ИТОГО			
	максимальное			70
	количество баллов			
	RUJIMACCI BU UAJIJIUB			

Таблица 3.2

Для очной формы обучения (Модуль 2)

№ п/п	Материалы необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцени- вания
	Решение задач	Правильность	Решение правильное и самостоятельное	20
1	Типового задания №3	решения задач	Выполнены не все задания и/или не верные решения	0
	, .	Итого максимали	ьное количество баллов	20

	Решение задач	Правильность	Решение правильное и	20
		Привильность	самостоятельное	
2	Типового	решения задач	Выполнены не все задания	0
	задания №4	решения задач	и/или не верные решения	
	, ,	Итого максимально	20	
	Тест №2	Правильность	14-15 задач решены	30
2		решения	11-13 задач решены	20
3		задач	10 задач решены	10
		Итого максимальное количество баллов		30
	ИТОГО			
	максимальное			70
	количество баллов			

Таблица 3.3

Для очно-заочной формы обучения (Модуль 1). (все профили, кроме «Автомобильные дороги»)

Материалы необходимые дл № оценки п/п индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцени- вания
---	--------------------------	------------------------	--------------------------

			Решение правильное и	20
	Решение задач	Правильность	самостоятельное	
1	Типового	решения задач	Выполнены не все задания	0
	задания №1		и/или не верные решения	U
		Итого максимальн	ое количество баллов	20
		Правильность	Решение правильное и	15
	Решение задач	Правильность	самостоятельное	
2	Типового	пенненния запан	Выполнены не все задания	0
	задания №2	решения задач	и/или не верные решения	
		Итого максимальн	15	
	Тест №1	Правильность	14-15 задач решены	30
3		решения	11-13 задач решены	20
3		задач	10 задач решены	10
		Итого максимальное количество баллов		30
	Отчет о		Работа выполнена	5
		Выполнение	правильно	
4	Лабораторной	лабораторной работы	Работа выполнена с	0
7		лаоораторной раооты	ошибками или не	
	работе №1		выполнена	
		Итого максимальное количество баллов		5
	ИТОГО			
	максимальное			70
	количество баллов			
	RUJIH TECT BU UAJIJIUB			

Таблица 3.4

Для очно-заочной формы обучения (Модуль 2). (все профили, кроме «Автомобильные дороги»)

№ п/п	Материалы необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцени- вания
1	Решение задач	Правильность решения задач	Решение правильное и самостоятельное	20

	Типового задания №3		Выполнены не все задания и/или не верные решения	0
	Sugarinar Ciza	Итого максимальн	юе количество баллов	20
	Решение задач	Правильность	Решение правильное и самостоятельное	20
2 Типового залания №4		Типового задания №4		0
		Итого максимальное количество баллов		20
		Правильность	14-15 задач решены	30
2	Тест №2	решения	11-13 задач решены	20
3		задач	10 задач решены	10
		Итого максимальное количество баллов		30
	ИТОГО			
	максимальное			70
	количество баллов			

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценивания индикаторов достижения компетенций представлена в таблицах 4.1-4.4.

Формирование рейтинговой оценки по дисциплине

Таблица 4.1 Для очной формы обучения (Модуль 1)

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости*	Типовое задание №1 Типовое задание №2 Тест № 1 Отчет о Лабораторной работе №1	70	Количество баллов определяется в соответствии с таблицей 3.1 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация*	Перечень вопросов к экзамену №1	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО	100	
3. Итоговая оценка	«Отлично» - 86-100 баллов «Хорошо» - 75-85 баллов «Удовлетворительно» - 60-74 баллов «Неудовлетворительно» - менее 59 баллов (вкл.)		

[«]Неудовлетворительно» - менее 59 баллов (вкл.)

* Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости*	Типовое задание №3 Типовое задание №4 Тест № 2	70	Количество баллов определяется в соответствии с таблицей 3.2 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация*	Перечень вопросов к экзамену №2	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или часть на вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО	100	
3. Итоговая оценка	«Отлично» - 86-100 баллов «Хорошо» - 75-85 баллов «Удовлетворительно» - 60-74 баллов «Неудовлетворительно» - менее 59 баллов (вкл.)		

^{*} Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета

(все профили, кроме «Автомобильные дороги»)

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости*	Типовое задание №1 Типовое задание №2 Тест № 1 Отчет о Лабораторной работе №1	70	Количество баллов определяется в соответствии с таблицей 3.1 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация*	Перечень вопросов к экзамену №1	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО 100		
3. Итоговая оценка	«Отлично» - 86-100 баллов «Хорошо» - 75-85 баллов «Удовлетворительно» - 60-74 баллов «Неудовлетворительно» - менее 59 баллов (вкл.)		

^{*} Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета

(все профили, кроме «Автомобильные дороги»)

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий	Типовое задание №3		Количество баллов
контроль	Типовое задание №4		определяется в соответствии
успеваемости*	Тест № 2	70	с таблицей 3.2
			Допуск к экзамену
			≥ 50 баллов
2. Промежуточная аттестация*	Перечень вопросов к экзамену №2	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО	100	
	«Отлично» - 86-100 баллов		
3. Итоговая	«Хорошо» - 75-85 баллов		
оценка	«Удовлетворительно» - 60-74 баллов		
	«Неудовлетворительно» - менее 59 баллов (вкл.)		

^{*} Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета

Процедура проведения экзамена осуществляется в форме:

- письменного и устного ответа на вопросы билета (по расписанию сессии);
- тестовых заданий СДО.

Билет на экзамен содержит два теоретических и два практических задания по темам из перечня вопросов промежуточной аттестации п.2.

5. Оценочные средства для диагностической работы по результатам освоения дисциплины

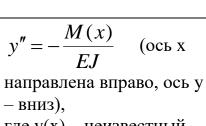
Проверка остаточных знаний обучающихся по дисциплине ведется с помощью оценочных материалов текущего и промежуточного контроля по проверке знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций.

Оценочные задания для формирования диагностической работы по результатам освоения дисциплины (модуля) приведены в таблице 5.1

Таблица 5.1

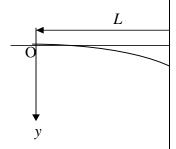
Индикатор достижения общепрофессиональной компетенции Знает - 1; Умеет- 2; Опыт деятельности - 3 (владеет/ имеет навыки)	Содержание задания	Варианты ответа на вопросы тестовых заданий	Эталон ответа
ОПК-1.1.1. Знает теоретические и практические основы естественных наук, а также математического аппарата для решения задач профессиональной деятельности	Продемонстрируйте знание методов вычисления определителей:	1) $f(x) = (1-x)^{2}$; 2) $f(x) = 2^{x} + 2^{-x}$; 3) $f(x) = \ln \frac{1-x}{1+x}$; 4) $f(x) = \sin x^{2}$	Вычисляя определитель по правилу треугольников, получим: $-1 \cdot \alpha \cdot 1 + 1 \cdot 4 \cdot (-3) + 2 \cdot (-2) \cdot 0 - \\ -2 \cdot \alpha \cdot (-3) - 0 \cdot 4 \cdot (-1) - 1 \cdot (-2) \cdot 1 = 0$ $\Rightarrow \alpha = 2$ Ответ: 2 $3\alpha + 4 + 5 = 0 \\ \alpha = -3$ $2) f(x) = 2^x + 2^{-x} \\ 4) f(x) = \sin x^2 \\ f(-x) = f(x)$ - четная функция

Продемонстрируйте знания математического анализа на примере: производная функции $y=x\cdot\sqrt{x^2+1}$ в точке $x_0=0$ равна? Продемонстрируйте знания математического анализа и установите соответствие между функциями $f(x)$ и их $y'=x'\cdot\sqrt{x^2+1}+x\cdot(\sqrt{x^2+1})';$ $y'=1\cdot\sqrt{x^2+1}+x\cdot\frac{2x}{2\sqrt{x^2+1}};$ $y'=1\cdot\sqrt{x^2+1}+x\cdot\frac{2x}{2\sqrt{x^2+1}}$	
$y = x \cdot \sqrt{x^2 + 1}$ в точке $y'(0) = 1 + 0 = 1$. Ответ: 1 Продемонстрируйте знания математического анализа и установите соответствие между $y'(0) = 1 + 0 = 1$. Ответ: 1 $y'(0) = 1 +$	
$y = x \cdot \sqrt{x^2 + 1}$ в точке $y'(0) = 1 + 0 = 1$. Ответ: 1 Продемонстрируйте знания математического анализа и установите соответствие между $y'(0) = 1 + 0 = 1$. Ответ: 1 $y'(0) = 1 +$	
$y = x \cdot \sqrt{x^2 + 1}$ в точке $y'(0) = 1 + 0 = 1$. Ответ: 1 Продемонстрируйте знания математического анализа и установите соответствие между $y'(0) = 1 + 0 = 1$. Ответ: 1 $y'(0) = 1 +$	
$y = x \cdot \sqrt{x} + 1$ в точке $x_0 = 0$ равна? Ответ: 1 Продемонстрируйте знания математического анализа и установите соответствие между Проверим соотношение $F'(x) = f(x)$. $f'(x) = \frac{2}{\sqrt{2x+1}} \Rightarrow f'(x) = \frac{2}{\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}$:	
$x_0 = 0$ равна? Продемонстрируйте знания математического анализа и установите соответствие между	
знания математического анализа и установите соответствие между Проверим соотношение $F'(x) = f(x)$. 1) $F(x) = \sqrt{2x+1} \Rightarrow$ $F'(x) = \frac{2}{\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}$	
анализа и установите соответствие между	
соответствие между $F'(x) = \frac{2}{x} = \frac{1}{x}$:	
соответствие между $F'(x) = \frac{2}{\sqrt{2x-x}} = \frac{1}{\sqrt{2x-x}};$	
$\Gamma(\lambda) = \frac{\Gamma(\lambda) - \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}}{\sqrt{2}}$	
первообразными $F(x)$.	
$\Phi_{\text{Mirring}} f(x)$	
$f'(x) = \frac{1}{(2x+1)^2}$ $F'(x) = \frac{1}{2} \cdot \frac{2}{2x+1} = \frac{1}{2x+1};$ $F(x) = \frac{1}{2} \cdot \frac{2}{2x+1} = \frac{1}{2x+1};$	
$ 2\rangle \Gamma(\lambda) = - \longrightarrow \longrightarrow$	
$ 2 f(r) = \frac{1}{r}$	
3) $f(x) = \frac{1}{2x+1}$ 2 способ решения:	
2x+1 $2x+1$ $1) c dx 1 c d(2x+1) 1$	
Первообразная $F(x)$:	
1) $F(x) = \sqrt{2x+1}$ 2) $\int \frac{dx}{\sqrt{2x+1}} = \frac{1}{2} \int \frac{d(2x+1)}{\sqrt{2x+1}} = \frac{1}{2} \cdot 2\sqrt{2x+1} + C =$	
2) $F(x) = \frac{1}{2} \ln(2x+1)$ $= \sqrt{2x+1} + C;$	
3) $F(x) = -\frac{1}{2(2x+1)}$	
OIBCI.	
1)-3)	
2)-1) 3)-2)	
3)-2)	

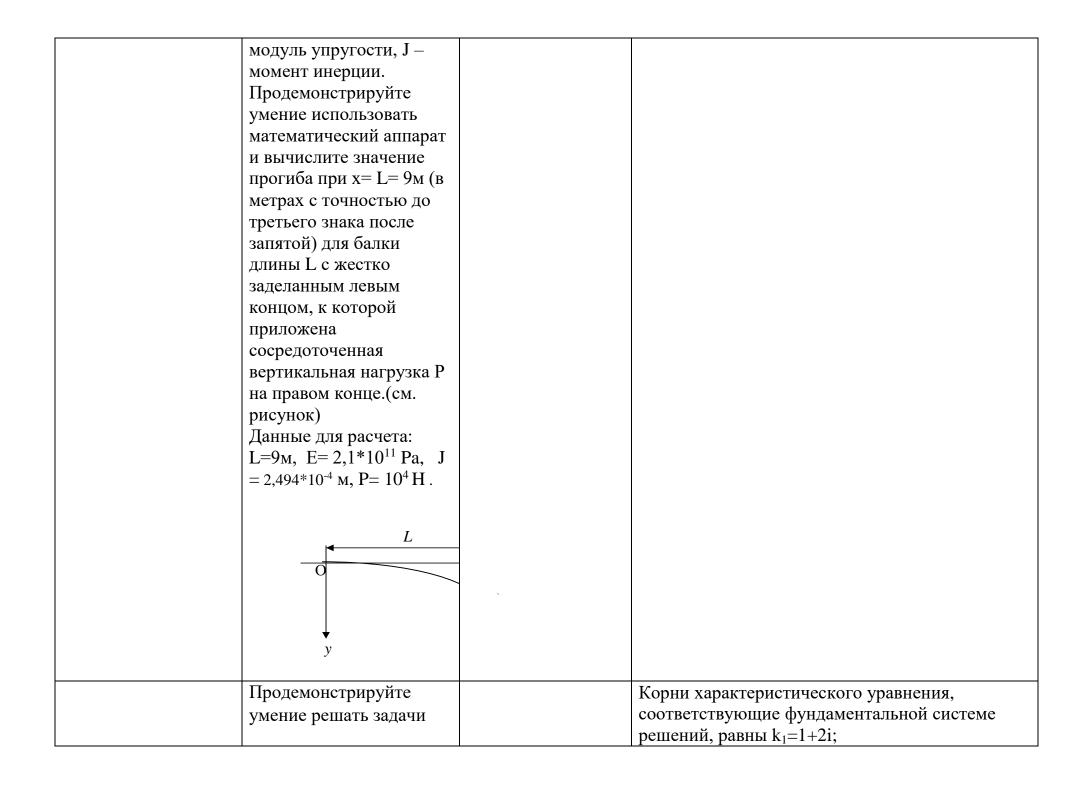

Продемонстрируйте знания дифференциальных уравнений (ДУ) и установите соответствие между ДУ и типами ДУ Продемонстрируйте знания дифференциальных уравнений (ДУ) и определите какая из указанных функций является решением ДУ $y' + y = x$, удовлетворяющим начальному условию $y(0) = -1$?	ДУ: 1) $y' - \frac{y}{x} = x^2$ 2) $y^2 + x^2y' = xyy'$. 3) $(x^2 + 5x)dx - x(y^2 + 3)dy = 0$ 4) $xy' - y^2 \ln x + y = 0$. Тип ДУ: 1) ДУ с разделяющимися переменными 2) Линейное ДУ 3) ДУ Бернулли 4) Однородное ДУ 1) $y = -(x+1)^2$; 2) $y = x - 1$; 3) $y = x^2 - 1$; 4) $y = (x-2)^2 - 5$ 5) $y = -1 + x$	Общее решение данного линейного д.у. имеет вид: $y = x - 1 + Ce^{-x}$. Подставляя начальное условие $y(0) = -1$, находим C=0. Ответ: 2) $y = x - 1$ или 5) $y = -1 + x$
знания рядов и	сходится, то его	рядов верными является утверждения:
определите какие	общий член	Ответ:
утверждения являются верными?	стремится к нулю;	

Продемонстрируйте знание числовых рядов: сумма числового ряда $1-0,5+(0,5)^2-(0,5)^3+$ равна	1) Если ряд сходится, то его общий член стремится к нулю 3) Если общий член ряда не стремится к нулю, то ряд расходится Данный ряд представляет собой сумму убывающей геометрической прогрессии. Формула: $S = \frac{a}{1-q}$. В данном случае $a = 1; q = -0, 5 \Rightarrow S = \frac{1}{1,5} = \frac{2}{3}$. Ответ: $\frac{2}{3}$
Продемонстрируйте знания теории вероятностей на примере: пусть X — дискретная случайная величина, заданная законом распределения вероятностей: X -1 3 p 0,4 0,6	$MX = -1 \cdot 0, 4 + 3 \cdot 0, 6 = 1, 4$ $MX^2 = 1 \cdot 0, 4 + 9 \cdot 0, 6 = 5, 8$ $DX = MX^2 - (MX)^2 = 5, 8 - (1, 4)^2 = 3, 84.$ Other: 3,84

	Тогда дисперсия этой случайной величины равна? Продемонстрируйте знания теории вероятностей на примере: если основная гипотеза имеет вид $H_0: a=-3$, то конкурирующей может быть гипотеза	1) $H_1: a \le -4$; 2) $H_1: a \le -3$; 3) $H_1: a \ge -4$; 4) $H_1: a \ge -2$	Утверждение $a=-3$ не удовлетворяет условиям $a\leq -4$ и $a\geq -2$, следовательно, соостветствующие гипотезы являются конкурирующими с данной гипотезой. Ответ: 1) $H_1: a\leq -4$; 4) $H_1: a\geq -2$.
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также математического аппарата	Продемонстрируйте умение решать задачи на примере: автомобиль массой m замедляет движение на прямолинейном участке пути под действием силы сопротивления, пропорциональной скорости движения: $R = k \cdot v(t), (k > 0)$. Тогда математическая модель движения описывается каким ДУ? Здесь $x(t)$ — расстояние от автомобиля до начала координат в момент времени t .		$m \cdot x'' = -k \cdot x'$ При замедлении движения ускорение отрицательно, $x'' < 0$.
	Продемонстрируйте умение решать задачи		$A(t) = A_0 \cdot e^{-kt};$


математического		A(t) должна уменьшаться при $k>0$.
моделирования на		1
примере: составить		
математическую модель	,	
отражающую		
зависимость стоимости		
оборудования от		
времени, если известно,		
что скорость		
обесценивания		
оборудования		
вследствие его износа		
пропорциональна в		
каждый данный момент		
времени его		
фактической стоимости		
A(t). В ответе указать		
зависимость стоимости		
оборудования от		
времени, учитывая, что		
начальная стоимость		
равна A_{θ} , а коэффициент		
пропорциональности		
равен $k (k > 0)$.		
Продемонстрируйте	1) $m \cdot x'' = k \cdot (x)^2$:	2), 3)
умение решать задачи	1) $m \cdot x'' = k \cdot (x)^2$; 2) $m \cdot x'' = -k \cdot x'$;	Уравнение линейное, если х', х" и х входят в
математического	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	уравнение только в первой степени и между
моделирования на	3) $m \cdot x'' = mg - k \cdot x'$; 4) $m \cdot (x')^2 = k \cdot x''$	собой не перемножаются.
примере: укажите, какие	$4) m \cdot (x')^2 = k \cdot x''$	
из приведенных		
математических моделей	Í	
являются линейными.		

Продемонстрируйте	$\int \frac{dT}{T-20} = \int kdt$
умение решать задачи	$\int T - 20$
математического	$T = 20 + Ce^{kt}$
моделирования на	$t=0, T=150$, тогда $\mathit{C}=130$
примере: изменение	
температуры тела в	$t=20$, $T=110$, тогда $90=130e^{20k}$
воздухе согласно закону	J., 9
Ньютона описывается	$k = rac{lnrac{9}{13}}{20}$, тогда $k = -0.0184$
уравнением	20
dT . (T. 20) —	Otbet: $T = 20 + 130e^{-0.0184t}$
$\frac{dT}{dt} = k (T - 20) (T -$	
температура тела, t –	
время, к – коэффициент	
пропорциональности).	
Вынутый из печи при	
температуре 150° C	
строительный кирпич	
остывает в помещении	
при температуре 20^0 до	
110^{0} С за 20 минут.	
Найдите закон	
охлаждения кирпича.	
Продемонстрируйте	$y'' = -\frac{M(x)}{EL}; M(x) = -P(L-x); y'' = +\frac{P(L-x)}{EL};$
умение решать задачи	2,
математического	$y' = \frac{P}{EJ} \left(Lx - \frac{x^2}{2} \right) + C; y = \frac{P}{EJ} \left(L\frac{x^2}{2} - \frac{x^3}{6} \right) + Cx + D;$
моделирования на	$EJ \setminus 2J \longrightarrow EJ \setminus 2 - 6J$
примере: уравнение	$y(0) = 0$; C=0;D=0; $y(x) = -\frac{P}{EI}(\frac{x^3}{6} - \frac{x^2L}{2})$
изогнутой оси балки	$\int_{C} \int_{C} \int_{C$
имеет вид:	$P(x^3 Lx^2)$
	OTBET: $y(x) = -\frac{P}{EJ} \left(\frac{x^3}{6} - \frac{Lx^2}{2} \right)$
	(- /


где у(х) – неизвестный прогиб в произвольном сечении, М(х) – изгибающий момент, Емодуль упругости, Ј – момент инерции. Найдите функцию у(х) для балки длины L c жестко заделанным левым концом, к которой приложена сосредоточенная вертикальная нагрузка Р на правом конце.(см. рисунок) Данные для расчета:

L=9_M, E= $2,1*10^{11}$ Pa, J = $2,494*10^{-4}$ M, P= 10^{4} H.

Пропомонотрунута	$k^2 + 9 = 0$.
Продемонстрируйте	
умение решать задачи	$k=\pm 3i$.
математического	$y_0 = C_1 \sin 3x + C_2 \cos 3x$
моделирования на	$y_{u} = A_{1} \sin x + A_{2} \cos x$
примере: при работе с	$\gamma_q = 1^{-1}$
математической	Подставим y_q в исходное уравнение
моделью напряженно-	$8A_1 \sin x + 8A_2 \cos x = 8\sin x$
деформированного	
состояния некоторой	Hаходим A_1 =1,
конструкции получено	$A_2 = 0$,
дифференциальное	Складывая $_{y_0}$ и y_u , получим функцию
уравнение:	Складывая_ y_0 и y_q , получим функцию
$y'' + 9y = 8\sin x.$	$y = C_1 \sin 3x + C_2 \cos 3x + \sin x.$
Продемонстрируйте	Other: $y = C \sin 2x + C \cos 2x + \sin x$
умение использовать	Other: $y = C_1 \sin 3x + C_2 \cos 3x + \sin x$
математический аппарат	
и найдите ту функцию,	
которая описывает всё	
множество решений	
уравнения:	
Продемонстрируйте	$\int \frac{dT}{T - 20} = \int kdt$
умение решать задачи	J T - 20 J
математического	$T = 20 + Ce^{kt}$
моделирования на	k = -0.0184; t = ?
примере: изменение	
температуры тела в	$T = 30$ °C; $30 = 20 + 130e^{-0.0184t}$;
воздухе согласно закону	$a^{-0.0184} - 1$
Ньютона описывается	$e^{-0.0184} = \frac{1}{13}$
уравнением	t = 139 мин.
$\frac{dT}{dt} = k (T - 20) (T -$	Ответ: 139 мин.
$\frac{1}{dt} = K(1 - 20) (1 - \frac{1}{2})$	
температура тела, t –	
Tomopar Jpar Tomo, t	

время, k — коэффициент пропорциональности). Вынутый из печи при температуре 150° С строительный кирпич остывает в помещении при температуре 20° до 110° С за 20 минут. Продемонстрируйте умение использовать математический аппарат и найдите время (в минутах) остывания кирпича до 30° . Повышением температуры в помещении пренебречь. Продемонстрируйте умение решать задачи математического моделирования на примере: уравнение изогнутой оси балки имеет вид: $y'' = -\frac{M(x)}{EJ} \text{(ось x направлена вправо, ось y - вниз),} $ где $y(x)$ — неизвестный прогиб в произвольном сечении, $M(x)$ — изгибающий момент, Е-	$y(x) = -\frac{P}{EJ} \left(\frac{x^2}{6} - \frac{x^2L}{2}\right);$ $x = L = 9; E = 2,1 \cdot 10^{11}; J = 2,494 \cdot 10^{-4}; P = 10^4$ $y(9) = 0,012 \text{ M}$ Otbet: 0,012 M
---	---

моделирования на примере: найдите дифференциальное уравнение прямолинейного движения груза под действием восстанавливающей силы, для которого фундаментальная система решений имеет вид: $y_1 = e^x \cos 2x$, $y_1 = e^x \sin 2x$.	будет иметь вид k^2 - $2k+5=0$, тогда $y''-2y'+5y=0$ Ответ: $y''-2y'+5y=0$
владение методами решения задач на нормальный закон распределения случайной величины: непрерывная случайная величина X задана плотностью распределения вероятностей $f(x) = \frac{1}{3\sqrt{2\pi}} \cdot e^{\frac{(x-3)^2}{18}}$	распределенной случайной величины $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}},$ где m- математическое ожидание, $\sigma^2 = DX$ -дисперсия, в данном случае m=3, $\sigma^2 = DX = 9$ Other: $m = 3$; $\sigma^2 = 9$

Чему равны		
математическое		
ожидание т и дисперсия		
σ^2 этой нормально		
распределённой		
случайной величины?		

Разработчик оценочных материалов, доцент 16.12.2024

Е.И.Спиридонов